NO_2 required for a reaction is produced by the decomposition of N_2O_5 in CCl_4 as per the equation,

$$2\mathrm{N}_2\mathrm{O}_5(\mathrm{g}) \to 4\mathrm{NO}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}).$$

The initial concentration of N_2O_5 is 3.00 mol L^{-1} and it is 2.75 mol L^{-1} after 30 minutes. The rate of formation of NO_2 is: [April 12, 2019 (II)]

- (a) $4.167 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$
- (b) $1.667 \times 10^{-2} \, \text{mol L}^{-1} \, \text{min}^{-1}$
- (c) $8.333 \times 10^{-3} \, \text{mol L}^{-1} \, \text{min}^{-1}$
- (d) $2.083 \times 10^{-3} \, mol \, L^{-1} \, min^{-1}$